www.gusucode.com > mpc_featured 案例源码 matlab代码程序 > mpc_featured/mpconlinetuning.m

    %% Tuning Controller Weights
% This example shows how to vary the weights on outputs, inputs, and ECR
% slack variable for soft constraints in real-time.
%
% The weights specified in the MPC object are overridden by the weights
% supplied to the MPC Controller block. If a weight signal is not connected
% to the MPC Controller block, then the corresponding weight is the one
% specified in the MPC object.

% Copyright 1990-2014 The MathWorks, Inc.  

%% Define Plant Model
% Define a multivariable discrete-time linear system with no direct I/O
% feedthrough, and assume input #4 is a measured disturbance and output #4
% is unmeasured.
Ts = 0.1; % sampling time
plant = tf({1,[1 1],5,2;3,[1 5],1,0;0,0,1,[1 1];2,[1 -1],0,0},...
    {[1 1 1],[1 3 4 5],[1 10],[1 5];
      [1 1],[1 2],[1 2 8],[1 1];
      [1 2 1],[1 3 1 1],[1 1],[1 2];
      [1 1],[1 3 10 10],[1 10],[1 1]});
plant = c2d(ss(plant),Ts);
plant.D = 0;

%% Design MPC Controller
% Specify input and output signal types.
plant = setmpcsignals(plant,'MD',4,'UO',4);
% Create the controller object with sampling period, prediction and control
% horizons:
p = 20;                                     % Prediction horizon
m = 3;                                      % Control horizon
mpcobj = mpc(plant,Ts,p,m); 
%%
% Specify MV constraints.
mpcobj.MV(1).Min = -6;
mpcobj.MV(1).Max = 6;
mpcobj.MV(2).Min = -6;
mpcobj.MV(2).Max = 6;
mpcobj.MV(3).Min = -6;
mpcobj.MV(3).Max = 6;

%% Simulate Using Simulink(R)
% To run this example, Simulink(R) is required.
if ~mpcchecktoolboxinstalled('simulink')
    disp('Simulink(R) is required to run this example.')
    return
end
% Define reference signal.
Tstop = 10;
ref = [1 0 3 1];            
r = struct('time',(0:Ts:Tstop)');
N = numel(r.time);
r.signals.values=ones(N,1)*ref;
%%
% Define measured disturbance.
v = 0.5;                                        
%%
% OV weights are linearly increasing with time, except for output #2
% that is not weighted.
ywt.time = r.time;
ywt.signals.values = (1:N)'*[.1 0 .1 .1];
%% 
% MVRate weights are decreasing linearly with time.
duwt.time = r.time;
duwt.signals.values = (1-(1:N)/2/N)'*[.1 .1 .1];
%%
% ECR weight increases exponentially with time.
ECRwt.time = r.time;
ECRwt.signals.values = 10.^(2+(1:N)'/N);
%% 
% Start simulation.
mdl = 'mpc_onlinetuning';
open_system(mdl);                   % Open Simulink(R) Model
sim(mdl);                           % Start Simulation

%% Simulate Using MPCMOVE Command
% Define real plant and MPC state object.
[A,B,C,D] = ssdata(plant);
x = zeros(size(plant.B,1),1);   % Initial state of the plant
xmpc = mpcstate(mpcobj);        % Initial state of the MPC controller
%%
% Store the closed-loop MPC trajectories in arrays YY,UU,XX.
YY = [];
UU = [];
XX = [];
%%
% Use MPCMOVEOPT object to provide weights at run-time.
options = mpcmoveopt;
%%
% Start simulation.
for t = 0:N-1,
    % Store states
    XX = [XX,x]; %#ok<*AGROW>
    % Compute plant output (no feedthrough from MV to Y)
    y = C*x+D(:,4)*v;
    YY = [YY;y'];
    % Obtain reference signal
    ref = r.signals.values(t+1,:)';
    % Update MPCMOVEOPT object with run-time weights
    options.MVRateWeight = duwt.signals.values(t+1,:);
    options.OutputWeight = ywt.signals.values(t+1,:);
    options.ECRWeight = ECRwt.signals.values(t+1,:);
    % Compute control action
    u = mpcmove(mpcobj,xmpc,y(1:3),ref,v,options);
    UU = [UU;u'];
    % Update plant states
    x = A*x + B(:,1:3)*u + B(:,4)*v;
end
%%
% Plot and Compare Simulation Results
figure(1);
clf;
subplot(121)
plot(0:Ts:Tstop,[YY ysim])
grid
title('output')
subplot(122)
plot(0:Ts:Tstop,[UU usim])
grid
title('input')
%%
% Simulation results are the same.
fprintf('\n\nDifference between MPC Simulink block and MPCMOVE simulations: %g',norm(UU-usim)+norm(YY-ysim));

%%
bdclose(mdl);